Lecture 14:
Finite Automata
Part 1 of 3

75% Percentile: 76 / 82 (93%)
50t Percentile: 72 / 82 (88%)

Problem Set Three Graded
25" Percentile: 65 / 82 (79%)

71
45 45
20
8
: m BN .
] 1

0—-46 47 — 52 53 — 58 59 — 64 65— 70 /1-76 77 —82

Midterm 1

84
 80th Percentile:

48 / 50 (96%)

* 60th Percentile:
o1 45 / 50 (90%)

 40th Percentile:
41 / 50 (82%)

e 20th Percentile:
1 34 /50 (68%)

10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-50

CD

Thoughts and Observations

« This is only 12.5% of your grade. « Assuming comfort going forward:
« We want everyone to be wildly * Contrapositive
successful!

 Negations (implication, quant.)

« 1-on-1s (contact Emily) « Assume/Prove table

* Review feedback Proofwriting Checklist

» Assess (small scattered point
losses? one large loss?)

D.ESTINATILONS

TOKYO 6.2

Espresso, milk, cherry blossom
water, vanilla, brown sugar

VALENCIA 6.2

Espresso, milk, orange blossom
water, coconut, vanilla, brown sugar

LEXINGTON 6.2

Espresso, milk, Jim Beam bourbon
reduction, vanilla, brown sugar

TRADILIONAL,

ESPRESSO 3.75
MACCHIATO 4
CORTADO 4.5
FLAT WHITE 4.8
CAPPUCCINO 4.8
LATTE 5.3
MOCHA 5.6
DRIP 4
AMERICANO 4.3
coLD BREW 5

MANILA 6.2

Espresso, milk, ube, mango,
coconut créme, vanilla, brown sugar

SANTIAGO 6.2
Espresso, milk, cocoa, cayenne,
ginger, cinnamon, brown sugar

BALI 6.2

Espresso, milk, coconut créme,
honey, cayenne

_N.O.T..C.O.EEEE

LOOSE LEAF TEA 4

.Black: Earl Grey. China Breakfast
.Green: Jasmine, Quince

. Herbal: Chamonmille.

Peppermint, African Sunset Rooibos

LONDON FOG 5.3
SNOWBIRD 5.8
CHAI LATTE 5.3
MATCHA LATTE 5.5

« Add Strawberry +0.60

LEMONADE 4.5

« Add Strawberry

ORANGE JUICE 5

FLAVOR $0.5 | ALMOND, OAT, soy $0.5 | EXTRA ESPRESSO $1

B.R.U.N.CH.LE BILLES

-MADE GRANOLA - GF*

made lemon zest & honey butter

le of honey & fresh strawberries!

OND CHIA PUDDING ° Vv, GF*

gar, salt, semi-sweet chocolate,
d with fresh SIIEWDEINES’

YOGURT & HOUSE
Straus Greek yogurt, house!
granola. Topped with a drizzi
CHOCO GANACHE & ALM
almond milk, brown su
m, almonds & cacao nibs. Toppe
RNIGHT OATS * V. GF*

s, oat milk, and maple syrup, With
d with cacao nibs!

Chia seeds,
coconut cred

PB & JAM OVE
Rolled oats, chia se€
raspberry jam- ToPP€
BREAKFAST BURRITO
i s, d eggs:
pay spiced potatoes: tender scramble
Bom by srito. House- T e on the side!

EGG FRITTATA °

Eggs & cream whipped with

peanut butter &

& white cheddar folded

made chipot

6.5

sonal vegetables & cheese, baked a5 @ soufflé!

v — VEGAN, GF*— GLUTEN FRIENDLY

CoDa Update

 The coffee shop is now

open! (7 AM - 2 PM)

« Starting March 3 it will be

open later. (7 AM - 5 PM)

Feel free to make use of
the beautiful study spaces
throughout the building!

Outline for Today

« Computability Theory

 What problems can we solve with a
computer?

« Formal Language Theory
* Stringy thingies.
 Finite Automata

* A very simple model of a computing device.

Computability Theory

What problems can we solve with a computer?

What problems can we solve with a computer?

/

What kind of
computer?

Two Challenges

 Computers are dramatically better now than
they’ve ever been, and that trend continues.

* Writing proofs on formal definitions is hard,
and computers are way more complicated
than sets, graphs, or functions.

 Key Question: How can we prove what
computers can and can’t do...

* ... so that our results are still true in 20 years?
* ... without multi-hundred page proots?

Enter Automata

 An automaton (plural: automata) is a
mathematical model of a computing device.

 It’s an abstraction of a real computer, the way
that graphs are abstractions of social networks,
transportation grids, etc.

 The automata we’ll explore are

 powerful enough to capture huge classes of computing
devices, yet

« simple enough that we can reason about them in a
small space.

 They’'re also fascinating and useful in their own
rights. More on that later.

Toward a Model of Computation...

© = b~ N
N U1 OO

w O VO

+

Why does this
computer
‘feel” less

powerful.

~Than This
one?

Calculators vs. Desktops

* A calculator has a small amount of memory. A
desktop computer has a large amount of
memory.

* A calculator performs a fixed set of functions. A
desktop is reprogrammable and can run many
different programs.

 These two distinctions account for much of the
difference between “calculator-like” computers and
“desktop-esque” computers.

« In CS103, we’ll first explore “small-memory”
computers in detail, then discuss “large-memory”
computers in depth.

Let’s Focus on Computing with Finite
Memory

Our Goal: A Unifying Abstraction

/ 8 9 =
4 6 x
1 2 3 -
O . = +

Data stored electronically,
Algorithm is in silicon,
Memory limited by display,

Data stored in wood.
Algorithm is in brain,
Memory limifed by beads,

How do we model “memory” and
“an algorithm” when they can take
on so many forms?

What’s in Common?

 These machines receive input _
from an external source. 2 8 g -

 That input is provided '
sequentially, one discrete unit 4 5 6 x
at a time. 1 2 3 -

« Each input causes the device to O . =+

change configuration. This
change, big or small, is where
the computation happens.

What’s in Common?

 These machines receive input
from an external source. 2 8 g -

 That input is provided '
sequentially, one discrete unit 4 5 6 x
at a time. 1 2 3 -

« Each input causes the device to O . =+

change configuration. This
change, big or small, is where
the computation happens.

What’s in Common?

 These machines receive input
from an external source. 2 8 g -

« That input is provided '
sequentially, one discrete unit 4 5 6 x
at a time. 1 2 3 -

« Each input causes the device to 0 = | +

change configuration. This
change, big or small, is where
the computation happens.

What’s in Common?

 These machines receive input
from an external source.

/7 8 9 =+

« That input is provided
sequentially, one discrete unit 4 5 6 x
at a time. 1 2 3 -
 Each input causes the device to O . = +

change configuration. This
change, big or small, is where
the computation happens.

What’s in Common?

 These machines receive input
from an external source.

/7 8 9 =+

« That input is provided
sequentially, one discrete unit 4 5 6 x
at a time. 1 2 3 -
 Each input causes the device to O . = +

change configuration. This
change, big or small, is where
the computation happens.

What’s in Common?

 These machines receive input n
from an external source. 2 8 g -

 That input is provided '
sequentially, one discrete unit 4 5 6 x
at a time. 1 2 3 -

« Each input causes the device to O . =+

change configuration. This
change, big or small, is where
the computation happens.

What’s in Common?

 These machines receive input m
from an external source. 2 8 g -

 That input is provided '
sequentially, one discrete unit 4 5 6 x
at a time. 1 2 3 -

« Each input causes the device to O . =+

change configuration. This
change, big or small, is where
the computation happens.

What’s in Common?

 These machines receive input
from an external source.

/7 8 9 =+

« That input is provided
sequentially, one discrete unit 4 5 6 x
at a time. 1 2 3 -
 Each input causes the device to O . = +

change configuration. This
change, big or small, is where
the computation happens.

What’s in Common?

 These machines receive input
from an external source.

/7 8 9 =+

« That input is provided
sequentially, one discrete unit 4 5 6 x
at a time. 1 2 3 -
 Each input causes the device to O . = +

change configuration. This
change, big or small, is where
the computation happens.

What’s in Common?

 These machines receive input
from an external source.

/7 8 9 =+

« That input is provided
sequentially, one discrete unit 4 5 6 x
at a time. 1 2 3 -
 Each input causes the device to O . = +

change configuration. This
change, big or small, is where
the computation happens.

What’s in Common?

 These machines receive input
from an external source.

/7 8 9 =+

« That input is provided
sequentially, one discrete unit 4 5 6 x
at a time. 1 2 3 -
 Each input causes the device to O . = +

change configuration. This
change, big or small, is where
the computation happens.

What’s in Common?

 These machines receive input
from an external source.

/7 8 9 =+

« That input is provided
sequentially, one discrete unit 4 5 6 x
at a time. 1 2 3 -
 Each input causes the device to O . = +

change configuration. This
change, big or small, is where
the computation happens.

What’s in Common?

 These machines receive input
from an external source.

/7 8 9 =+

« That input is provided
sequentially, one discrete unit 4 5 6 x
at a time. 1 2 3 -
 Each input causes the device to O . = +

change configuration. This
change, big or small, is where
the computation happens.

What’s in Common?

 These machines receive input
from an external source.

/7 8 9 =+

« That input is provided
sequentially, one discrete unit 4 5 6 x
at a time. 1 2 3 -
 Each input causes the device to O . = +

change configuration. This
change, big or small, is where
the computation happens.

* Once all input is provided, we
can read off an answer based
on the configuration of the
device.

Modeling Finite Computation

« We will model a finite-

a
memory computer as a start qoz m
collection of states linked A

by transitions. d
 Each state corresponds to b b b b
one possible configuration of 3
the device’s memory. This is a Z
super abstract! @ qs
a

« Each transition indicates
how memory changes in
response to inputs.

 Some state is designated as
the start state. The
computation begins in that
state.

Modeling Finite Computation

 This device processes 3
strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b b b A

» The string represents the full
sequence of inputs to the

N a
device. @ Zq3 ,
* To run this device, we begin

in our start state and scan
the input from left to right. Li blalb|lbla

 Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3
strings made of characters. start g qoz m
« Each character represents AN—"
some external input to the

device. b b b A

» The string represents the full
sequence of inputs to the

N a
device. @ Zq3 ,
* To run this device, we begin

in our start state and scan
the input from left to right. Li blalb|lbla

 Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3

strings made of characters. start g qoz m
« Each character represents AN—"
some external input to the

device. b E b E

» The string represents the full
sequence of inputs to the

N a
device. @ Zq3 ,
* To run this device, we begin

in our start state and scan
the input from left to right. alblalbl|bla

 Each time the machine sees 4+
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3

strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b E b E

» The string represents the full
sequence of inputs to the

N a
device. @ ZqB ’
* To run this device, we begin

in our start state and scan
the input from left to right. alblalbl|bla

 Each time the machine sees 4+
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3

strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b E b E

» The string represents the full
sequence of inputs to the

N a
device. @ ZqB ’
* To run this device, we begin

in our start state and scan
the input from left to right. alb

» o

 Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3

strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b E b E

» The string represents the full
sequence of inputs to the

N a
device. @ Zq3 ,
* To run this device, we begin

in our start state and scan
the input from left to right. alb

» o

 Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3

strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b E b E

» The string represents the full
sequence of inputs to the

N a
device. @ Zq3 ,
* To run this device, we begin

in our start state and scan
the input from left to right. albla

b
 Each time the machine sees 4+
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3

strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b E b E

» The string represents the full
sequence of inputs to the

N a
device. @ Zq3 ,
* To run this device, we begin

in our start state and scan
the input from left to right. albla

b
 Each time the machine sees 4+
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3

strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b E b E

» The string represents the full
sequence of inputs to the

N a
device. @ Zq3 ,
* To run this device, we begin

in our start state and scan
the input from left to right. alblalbl|bla

 Each time the machine sees)
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3

strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b E b E

» The string represents the full
sequence of inputs to the

N a
device. @ Zq3 ,
* To run this device, we begin

in our start state and scan
the input from left to right. alblalbl|bla

 Each time the machine sees)
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3
strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b b b A

» The string represents the full
sequence of inputs to the

N a
device. @ Zq3 ,
* To run this device, we begin

in our start state and scan
the input from left to right. alblalblb :J

 Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3
strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b b b A

» The string represents the full
sequence of inputs to the

N a
device. @ ZqB ’
* To run this device, we begin

in our start state and scan
the input from left to right. alblalblb :J

 Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3

strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b E b E

» The string represents the full
sequence of inputs to the

N a
device. @ ZqB ’
* To run this device, we begin

in our start state and scan
the input from left to right. alblalbl|bla

 Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

* Once we’ve finished entering

a
all the characters of our input, start m
we need to obtain the result of qOZ q1

the computation. d ‘
» In general, computers can E b E E

produce all sorts of things as

the result of a computation: a L~y a

number, a piece of text, etc. @ Z qs)
« As a simplifying assumption, 3

we’ll assume that we just need

to get a single bit of output. alblalblbla

That is, our machines will just
say YES or NO.

* (This can be generalized -
come talk to us after class if
you’re curious how!)

Modeling Finite Computation

* Some of the states in our a
computational device will start 2 m
. 4’(do qa
be marked as acceplting
states. These are denoted

with a double ring. b b b b

Modeling Finite Computation

* Some of the states in our a
computational device will start,<2 m
be marked as acceplting
states. These are denoted
with a double ring. b b b b

- If the device ends in an pag
accepting state after @
seeing all the input,
accepts the input (says

YES). a/lbla|b|b|a

« If the device does not end
in an accepting state after
seeing all the input, it
rejects the input (says NO).

Modeling Finite Computation

« Some of the states in our
computational device will
be marked as accepting
states. These are denoted
with a double ring.

« If the device ends in an
accepting state after
seeing all the input,
accepts the input (says
YES).

 If the device does not end
in an accepting state after
seeing all the input, it

rejects the input (says NO). nl: APPHIWAI.

Modeling Finite Computation

* Try it yourself! a
Which of these 2 m
strings does this
device accept?

aab @

aabb a

abbababba
Answer at
hittps://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Modeling Finite Computation

* Try it yourself! a
Which of these Z m
b| |b

strings does this a T
device accept?

aab @ Z
_: a|b

Modeling Finite Computation

* Try it yourself! a
Which of these 2 m
b| |b

strings does this N
device accept?

aab @ Z
_: a|b

Modeling Finite Computation

* Try it yourself! a
Which of these 2 m
b| |b

strings does this
device accept?

aab @

d

» o

Modeling Finite Computation

* Try it yourself! a
Which of these Z m
b| |b

strings does this
device accept?

aab @

d

» o

Modeling Finite Computation

* Try it yourself! a
Which of these Z m
b| |b

strings does this a T
device accept?

aab @

ala|b

Modeling Finite Computation

* Try it yourself! a
Which of these 2 m
b| |b

strings does this a T
device accept?

aab @

ala|b

Modeling Finite Computation

* Try it yourself! a
Which of these 2 m
b| |b

strings does this a T
device accept?

©

ala|b

aab @

Modeling Finite Computation

* Try it yourself! a
Which of these Z m

strings does this a

device accept? bl b bl |b
@
a

A S 2
\ “v—m * o y -
.-l' o i} l'-
Bl pe o, <t Ay
™ F = > "1 -4 - &
N >
g P
. / T T

Modeling Finite Computation

* Try it yourself! a
Which of these 2 m
b| |b

strings does this a T
device accept?

aab @ Z
aabb 2

abbababba ajalb

Finite Automata

« This type of computational
device is called a finite
automaton (plural: finite
automata).

Finite automata model
computers where (1)
memory is finite and (2)
the computation produces
as YES/NO answer.

In other words, finite
automata model
predicates, and do so with
a fixed, finite amount of
memory.

b

L~
(@)

start <‘2 : @
b b

b

Finite-memory
Computer

Formalizing Things

Strings

 An alphabet is a finite, nonempty set of symbols
called characters.

» Typically, we use the symbol X to refer to an alphabet.

* A string over an alphabet 2 is a finite sequence of
characters drawn from 2.

« Example: Let X = {a, b}. Here are some strings over 2:
a aabaaabbabaaabaaaabbb abbababba

Strings

An alphabet is a finite, nonempty set of symbols
called characters.

» Typically, we use the symbol X to refer to an alphabet.

A string over an alphabet 2 is a finite sequence of
characters drawn from 2.

Example: Let 2 = {a, b}. Here are some strings over :
a aabaaabbabaaabaaaabbb abbababba

But wait! There are no quotes here!

The empty string has no characters and is denoted
E.

Languages

A language over 2 is a set L consisting of
strings over 2.

 Example: The language of palindromes over
> ={a, b, c} is the set

 {g, a, b, ¢, aa, bb, cc, aaa, aba, aca, bab, ... }

* The set of all strings composed from letters in
2 is denoted X*.

 Formally: 2* = { w | wis a string over X }.

 Formally, we say that L is a language over X
when L C 2*,

Mathematical Lookalikes

 We now have €, g, 2, and >2*. Yikes!
 The symbol € is the... ?

Mathematical Lookalikes

 We now have €, g, 2, and >2*. Yikes!

 The symbol € is the element-of relation.

Mathematical Lookalikes

« We now have €, g, 2, and 2*. Yikes!
 The symbol € is the element-of relation.
« The symbol € is the... ?

Mathematical Lookalikes

« We now have €, ¢, 2, and X*. Yikes!
 The symbol € is the element-of relation.
« The symbol € is the empty string.

Mathematical Lookalikes

« We now have €, ¢, 2, and X*. Yikes!
 The symbol € is the element-of relation.
« The symbol € is the empty string.

 The symbol X~ denotes... ?

Mathematical Lookalikes

 We now have €, g, 2, and >2*. Yikes!

 The symbo.
* The symbo]

| € is the element-of relation.
| £ 1s the empty string.

* The symbo]

| 2 denotes an alphabet.

Mathematical Lookalikes

« We now have €, ¢, 2, and X*. Yikes!
 The symbol € is the element-of relation.
« The symbol € is the empty string.

 The symbol X denotes an alphabet.

 The expression 2* means “all strings that can
be made from characters in 2.”

» That lets us write things like
* We have € € 2*, but € ¢ 2.

* Ever get confused? Just ask!

The Cast of Characters

« Languages are sets of strings.

* Strings are finite sequences of characters.
 Characters are individual symbols.
 Alphabets are sets of characters.

Languages Alphabets

are sets of are nonempty, finite sets of

y y

. are finite sequences of
Strings Characters

Finite Automata and Languages

« Let A be an
automaton that
processes strings
drawn from an

alphabet 2. starty (7 :

 The language of A,
denoted £ (A), is the
set of strings over X
that A accepts:

F(A) ={we X*| A accepts w }

Finite Automata and Languages

e Let D be the automaton shown to the
right. It processes strings over {a, b}.

 Notice that D accepts
all strings of a’s and b’s o
that end in a and
rejects everything else.
e So¥D)={we{a b}*| wendsin a }.

F(A) ={we X*| A accepts w }

------------- This means “take this
e transition if you see
anaorab.”

What are the languages
of these automata? Answer at
https://cs103.stanford.edu/pollev

F(A) ={we X*| A accepts w }

https://cs103.stanford.edu/pollev

The Story So Far

A finite automaton is a collection of states joined by
transitions.

Some state is designated as the start state.

Some number of states are designated as accepting
states.

The automaton processes a string by beginning in the
start state and following the indicated transitions.

If the automaton ends in an accepting state, it accepts
the input.

Otherwise, the automaton rejects the input.

The language of an automaton is the... ?

The Story So Far

A finite automaton is a collection of states joined by
transitions.

Some state is designated as the start state.

Some number of states are designated as accepting
states.

The automaton processes a string by beginning in the
start state and following the indicated transitions.

If the automaton ends in an accepting state, it accepts
the input.

Otherwise, the automaton rejects the input.

The language of an automaton is the set of strings it
accepts.

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

| HAVE NO
IDEA WHAT
I'M DOING

-

Another Small Problem

Another Small Problem

Another Small Problem

Another Small Problem

Another Small Problem

Another Small Problem

Another Small Problem

Another Small Problem

IHAVENO

IDEA WHAT
I'M IIIII_IE

The Need for Formalism

 In order to reason about the limits of
what finite automata can and cannot do,

we need to formally specify their behavior
in all cases.

» All of the following need to be defined or
disallowed:

« What happens if there is no transition out of
a state on some input?

 What happens if there are multiple
transitions out of a state on some input?

DFAs

c ADFA is a

e Deterministic
 Finite
e Automaton

 DFAs are the simplest type of automaton
that we will see in this course.

DFAs

« A DFA is defined relative to some
alphabet 2.

* For each state in the DFA, there must be
exactly one transition defined for each
symbol in X.

* This is the “deterministic” part of DFA.
 There is a unique start state.

 There are zero or more accepting states.

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

0

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

start (),1
011011

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA?

Is this a DFA?

Is this a DFA?

"-r _1-'I
8- B
e S
R -
- - ‘_I P s ' e :-_‘1‘ l.ih-
B F - . u & i !
f_‘lr H i - "'. = F &5 F - - o - ll r-' h] -
i, . £ ki : =T

Drinking Family of Aardvarks

Is this a DFA?

Is this a DFA?

Drunken Farm Animal

Designing DFAS

* At each point in its execution, the DFA
can only remember what state it is in.

 DFA Design Tip: Build each state to

correspond to some piece of information
you need to remember.

« Each state acts as a “memento” of what
you're supposed to do next.

* Only finitely many different states means
only finitely many different things the
machine can remember.

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

start .

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

d

o

start @

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

a
start b
“{0)

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

a a

=)

start b
DRRO

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

a a
start b b
() * {2

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

a a a
o

start b b
DERORRO

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Each stale remembers

the vemainder ot the

number of bs seen so
far modulo three,

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

start

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

tar

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b
tart

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b
tart
b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

tt@@ a

b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

start a g
to W O

b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

start -@ 3 »(q\ . a
AN

b

, b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

start -@ 3 »(q\ . a
AN

b

, b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

2
start @ a »(q\ a
YR

b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

2
start @ a »(q\ a
YR

b

More Elaborate DFASs

L={weH{a * [}*| wrepresents a C-style comment }

Let’s have fhe @ symbol be a placeholder for *some character fhaf
isn't a star or slash,”

Try designing a DFA for comments: Here’'s some fest cases fo help
you check your work:

Accepted: Rejected:
[*a*[[**
[**/ [**[a[*aa*/
/***/ aaa/**laa

[*aaa*aaa*/ [*/

[*a[a*] [**af

[/aaaa

More Elaborate DFAs

L={weH{a * [}*| wrepresents a C-style comment }

Next Time

* Reqular Languages
 An important class of languages.
 Nondeterministic Computation
 Why must computation be linear?
- NFAs

 Automata with Magic Superpowers.

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146

